Ranks of (quadratic twists of) elliptic curves with a rational point of order 3

Mike Vazan

Einstein Institute of Mathematics,
Hebrew University of Jerusalem (Master's student, advised by Prof. Ari Shnidman)

April 20, 2023

Basic Definitions

An elliptic curve E / \mathbb{Q} can be given in WS form $E_{A, B}=y^{2}=x^{3}+A x+B$. Given $d \neq 0$ not a square, the quadratic twist of E is $E^{d}: d y^{2}=x^{3}+A x+B$.

Define the height $H\left(E_{A, B}\right):=\max \left\{4\left|A^{3}\right|, 27 B^{2}\right\}$.

Mordell-Weil $\Rightarrow E(\mathbb{Q}) \cong E(\mathbb{Q})_{\text {tors }} \times \mathbb{Z}^{r}$. The rank $r(E)$ of E is r.

Average rank of elliptic curves in a family F :

$$
\lim _{X \rightarrow \infty} \frac{\sum_{E \in F: H(E)<X} r(E)}{\sum_{E \in F: H(E)<X} 1}
$$

Quadratic Twisting - Influence on Arithmetic Properties?

Given an elliptic curve, consider its quadratic twist(s).
(How) does this change the arithmetic properties?
Given a family of elliptic curves, consider the family of their quadratic twists. (How) does this change the arithmetic properties?

- Is the average rank of all elliptic curves over \mathbb{Q} finite?
- Bhargava-Shankar, 2015: Yes
- $\leq 1.05 \leq 1.5$
- Quadratic twists - same proof
- What is the average rank in a general family?
- What is the average rank in families of elliptic curves having marked points?

Average Size of the 2-Selmer Group

Cohomologically:

$$
\operatorname{Sel}_{2}(E / \mathbb{Q})=\left\{x \in H^{1}(\mathbb{Q}, E[2]) \mid \operatorname{res}_{p}(x) \in \operatorname{Im}\left(K_{p}\right) \forall p\right\}
$$

where res_{p} is the restriction of Galois cohomology from \mathbb{Q} to \mathbb{Q}_{p} and K_{p} the Kummer map.

It fits into an exact sequence

$$
0 \rightarrow E(\mathbb{Q}) / 2 E(\mathbb{Q}) \rightarrow \operatorname{Sel}_{2}(E) \rightarrow Ш_{E}[2] \rightarrow 0
$$

Thus the 2-Selmer rank gives an upper bound for the algebraic rank of E.

From Average Size of Selmer to (a bound on) Average Rank

$$
0 \rightarrow E(\mathbb{Q}) / 2 E(\mathbb{Q}) \rightarrow \operatorname{Sel}_{2}(E) \rightarrow Ш_{E}[2] \rightarrow 0
$$

$\operatorname{dim}_{\mathbb{F}_{2}}\left(\operatorname{Sel}_{2}(E)\right)=r(E)+\operatorname{dim}_{\mathbb{F}_{2}}(E(\mathbb{Q})[2])+\operatorname{dim}_{\mathbb{F}_{2}}\left(\amalg_{E}[2]\right)$

$$
\left.2 \operatorname{dim}_{\mathbb{F}_{2}}\left(\operatorname{Sel}_{2}(E)\right) \leq 2^{\operatorname{dim}_{\mathbb{F}_{2}}\left(\operatorname{Sel}_{2}(E)\right)}=\mid \operatorname{Sel}_{2}(E)\right) \mid
$$

Average Size of the 2-Selmer Group - Main Theorem

Consider the family $F=\left\{y^{2}+a_{1} x y+a_{3} y=x^{3} \mid a_{1}, a_{3} \in \mathbb{Z}, \Delta \neq 0\right\}$ of elliptic curves over \mathbb{Q} with a marked rational point of order 3 .

Theorem (Bhargava-Ho, 2022)
When the elliptic curves in F are ordered by height, $\operatorname{avg}_{E \in F} \# \operatorname{Sel}_{2}(E) \leq 3$.

Corollary: The average rank of elliptic curves in F is finite (≤ 1.5).
New question: Does this result still hold if we consider the family of quadratic twists of elliptic curves in F ?

Goal: Show that the average rank is finite and compute an explicit bound.

Parameterisation - Bhargava-Ho

$V=2 \otimes \operatorname{Sym}_{3}(2)$ the space of pairs of binary cubic forms, $G=S L_{2}^{2} / \mu_{2}$.
The ring of invariants is generated by a_{1}, a_{3}, having degrees 2,6 , respectively.
A pair of binary cubic forms $\left(F_{1}, F_{2}\right) \in V(\mathbb{Q})$ is locally soluble if the hyperelliptic curve $z^{2}=\operatorname{Disc}_{x, y}\left(F_{1} u+F_{2} v\right)$ is.

Theorem (Bhargava-Ho)

Let $E \in F=\left\{y^{2}+a_{1} x y+a_{3} y=x^{3} \mid a_{1}, a_{3} \in \mathbb{Z}, \Delta \neq 0\right\}$
There is a bijection

$$
\operatorname{Sel}_{2}(E) \longleftrightarrow G(\mathbb{Q}) \backslash V(\mathbb{Q})_{a_{1}, a_{3}}^{\text {locally soluble }}
$$

Counting Outline - Bhargava-Ho

- The computation of $\operatorname{avg}_{E \in F} \# \operatorname{Sel}_{2}(E)$ is reduced to counting $G(\mathbb{Q})$-orbits that are locally soluble and have bounded integral invariants.
- Select representative integral orbits. Need to study $G(\mathbb{Q})$-equivalence classes on $V(\mathbb{Z})$.
- Count of the total number of integral orbits.
- Perform a uniformity estimate and a sieve (for F - Bh-Ho managed only upper bound sieve) to restrict to the locally soluble \mathbb{Q}-orbits.
- $1+2=3$

Generalisation to Quadratic Twists

Parameterisation on an abstract level.

Integrality?

Counting

Thank you!

Let E / \mathbb{Q} be an elliptic curve. The 2-Selmer group $\operatorname{Sel}_{2}(E)$ parameterises isomorphism classes of pairs (C, D), where
C is a genus one curve over \mathbb{Q} satisfying $\operatorname{Pic}^{0}(C) \cong E$ (torsor)
D is a degree 2 divisor on C
locally soluble: $C\left(\mathbb{Q}_{p}\right) \neq \emptyset$ for all primes p and $C(\mathbb{R}) \neq \emptyset$
$\amalg_{E}=\operatorname{ker}\left(H^{1}(\mathbb{Q}, E) \rightarrow \Pi_{p} H^{1}\left(\mathbb{Q}_{p}, E\right)\right)$ the Tate-Shafarevich group

